Programme	B.Sc. (Engg.) Energy Engineering	Course Code	NS 215	Credit Hours	3 + 0 = 3			
Course Title	Annlied Differential Equations							
Course Introduction								
Differential Equations (NS 215) is a crucial course in the third semester that delves into the theory and applications of differential equations, a fundamental tool in engineering and the sciences. The course provides students with a comprehensive understanding of how to formulate and solve various types of differential equations. Emphasis is placed on the application of these equations in modeling and solving real-world engineering problems. By the end of the course, students will be adept at using differential equations to analyze and predict system behaviors, equipping them with the skills needed for advanced technical								
challenges.	<u>le</u>	SDG-4:	Quality Educ	cation				
		Learning Outco						
 Identify the differential equation (C1) Illustrate the use of differential equations in engineering applications. (C3) Solve differential equations. (C3) 								
	Course Co			Assignments	0			
Week 1	Unit-I Ordinary Differential Equations 1.1. Basic concepts of ordinary differential equation 1.2. General and particular solution			The teacher may assign home assignments/problem- based learning/reading				
Week 2	1.3. Initial and boun 1.4. Linear and nonl	5			ning			
Week 3	•	inary Differential Equations and non-exact (integrating factor)						
Week 4Unit-I Ordinary Differential E1.5.2 linear and non-linear Bern				-				
Week 5	Week 5Unit-I Ordinary Differential Equations1.5.3. Equations of Ricatti and Clairaut.							
Week 6	Week 6Unit-I Ordinary Differential Equations1.1 Applications of Linear and Non-Linear First Order ODEs.							

	Unit-II Second Order Differential Equations
	2.1. Linear Differential Equations of Higher
Week 7	Order: Preliminary Theory, Initial and Boundary
	Value Problems, Linear Dependence and Linear
	Independence.
	Unit-II Second Order Differential Equations
Week 8	2.2. Solution of second order differential
	equations
	Unit-II Second Order Differential Equations
Week 9	2.3. Homogeneous Linear Equations with
	constant coefficients.
	Unit-II Second Order Differential Equations
Week 10	2.4 Non-Homogeneous Linear Equations with
	Variable Coefficients: Cauchy-Euler Equation.
	Unit-III Partial Differential Equations
	3.1. Basic Concepts linear and non-linear P.D
Week 11	equations
	3.2. Quasi linear and Quasi non-linear P.D
	equations
	Unit-III Partial Differential Equations
	3.3. homogenous and non-homogenous P.D
Week 12	equations
	3.4. Solutions of P.D equations
	3.5. Boundary and initial conditions
	Unit-III Partial Differential Equations
Week 13	3.6. Analytic Solution by separation of Variables
week 15	of the Steady State, two-dimensional heat
	equation/Laplace equation.
	Unit-III Partial Differential Equations
Weels 14	3.7. Un-steady one-dimensional heat
Week 14	equation/Diffusion equation with homogenous
	and non-homogenous boundary conditions.
	Unit-IV Laplace Transform
	4.1. Laplace Transform: Laplace Transform and
Week 15	Inverse Transform.
	4.2. Unit step function, Dirac delta function
	Unit-IV Laplace Transform
Week 16	4.3. Solution of 1st and higher order initial value
WEEK IU	problem using Laplace Transform
4	Textbooks and Reading Material
1. Textbook	
1.1 Ochieng,	F. O. (2022). Calculus For Scientists and Enginee

Services LLC - Kdp.

- 1.2 Nonlinear Functional Analysis and Its Applications. (2021). Switzerland: MDPI AG.
- 1.3 Zill, D. G. (2016). Differential equations with boundary-value problems. Nelson Education.
- 1.4 Greenberg, M. D. (2013). Foundations of applied mathematics. Courier Corporation.
- 1.5 Stroud, K. A., & Booth, D. J. (2013). Engineering mathematics. Macmillan International Higher Education

2. Suggested Readings

2.1 Zill, D. G. (2012). A first course in differential equations with modeling applications. Cengage Learning.

Teaching Learning Strategies

1 Multimodal **Instruction**: Utilize lectures with multimedia and white/blackboard to deliver content and facilitate understanding.

2 **Interactive and Collaborative Learning**: Engage students through group discussions, project-based learning, and presentations to develop critical thinking and communication skills.

3 Assignments and Assessments: Assign individual and group tasks, reading and writing assignments to assess comprehension and encourage independent study.

4 **Practical Application**: Integrate real-world projects and case studies to bridge theory and practice, enhancing problem-solving and practical skills.

Assignments: Types and Number with Calendar

Week	1	2	3	4	5	6	7	8
Activity	-	-	-	Quiz 1	Assignment 1	-	-	

Week	9	10	11	12	13	14	15	16
Activity	-	-	-	Assignment 2	Quiz 3	-	-	-

The abovementioned schedule of assignments/quizzes/presentations is tentative. The schedule will be provided to the students at the start of semester.

	Assessment					
Sr. No.	Elements	Weightage	Details			
1.	Midterm Assessment	35%	Written assessment at the mid-point of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work, report writing, and viva-voce examination, etc.			
2.	Sessional Assessment	25%	This assessment may include classroom participation, assignments, presentations, viva voce, attitude and behavior, hands-on-activities, short tests, projects, practical, reflections, readings, quizzes etc.			

3.	Final Assessment	40%	Written assessment at the end of the semester. It is mostly in the form of a test, but owing to the nature of the course the teacher may assess their students based on term paper, research proposal development, field work, report writing, and viva-voce examination, etc.
----	---------------------	-----	--